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SUMMARY: 
Designing long-span bridges to withstand wind loads has become the principal concern of designers and scholars. 
Two methods are used to assess the aerodynamic performance of long-span bridges: (i) Wind tunnel tests and (ii) 
Computational fluid dynamics (CFD) simulations. While wind tunnel tests have been the only method to assess the 
aerodynamic performance of long-span bridges, the recent trend in bridge aerodynamic study is increasingly relying 
on CFD simulations. However, both CFD simulation and wind tunnel tests are time-consuming. To tackle this flaw, 
scholars have proposed machine learning (ML) models. Despite the prowess of ML models in the wind engineering 
field, they provide accurate results only when big data are available which hinders their application since generating 
big data in wind engineering is cost prohibitive. Additionally, both wind tunnel test and CFD data are prone to 
uncertainties which are necessary to quantify during the prediction. This study proposes a hierarchical Bayesian 
modeling (HBM) to predict the critical flutter velocity of the long-span bridge, which overcomes the weaknesses of 
the conventional ML approaches. 
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1. INTRODUCTION 
Understanding the aeroelastic behavior of long-span bridges is crucial for the wind-resistant 
design and analysis of such mega structures (Tinmitondé et al., 2022). The growing main span of 
these structures makes them very sensitive to wind-induced vibration, especially flutter 
instability. Therefore, robust and accurate estimation models are needed to overcome the 
potential destruction of long-span bridges due to the flutter phenomenon (Scanlan, 1990). Wind 
tunnel tests and CFD simulations are commonly used to study the aeroelastic behavior of long-
span bridges. However, the aforementioned approaches are time-consuming and cost-prohibitive. 
Therefore, scholars are now turning to data-driven models such as surrogate models and machine 
learning models (Kareem, 2020; Rizzo and Caracoglia, 2020). However, the machine learning 
algorithms used to predict the flutter velocity were built using deterministic structural and 
aerodynamic parameters without considering the uncertainties in variables (geometric properties, 
and aerodynamic derivatives). Besides, machine learning models need significant data for 
accurate prediction, which limit their application in the wind engineering field. 
This paper aims at proposing hierarchical Bayesian modeling to improve the prediction accuracy 



of the critical flutter velocity by including the uncertainties in the data. 
 
 
2. THEORETICAL BACKGROUND  
 
2.1 Hierarchical Bayesian model 
The proposed Bayesian inference consists of three steps (See  
Fig. 1). Firstly, the distribution of the prior uncertain parameters is given. Secondly, based on 
Bayes's theorem, the posterior distribution is calculated. Finally, the unobserved data point is 
determined by using the posterior distribution. 

 
 

Fig. 1 Roadmap of the hierarchical Bayesian modeling framework 
 
2.2 Mathematical construct of hierarchical Bayesian model 
The relationship between the response and independent variables can be expressed as follows 
(see Eq. (1)): 
y X      (1) 

where y is the target, X is the variables,   and  0 1 2 3 4, , , ,       are unknown 
coefficients parameters to be estimated.  is the error. 
From a probability distribution viewpoint, Eq. (1) can be rewritten as follow (see Eq. (2)): 
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where   is the probability density function (PDF) of the normal distribution. 
Assuming that all data points are statistically independent identically distribution (i.i.d). Then the 
probability distribution can be expressed as follow (see Eq. (3)): 
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By denoting   the random variables to be estimated in the flutter velocity of long-span 
suspension bridges.          , , , ,              are the prior probability density 

distribution of the hyperparameters , , , ,         . Then, Eq. (4) can be obtained. 
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3. APPLICATION TO LONG-SPAN BRIDGE FLUTTER VELOCITY PREDICTION 
 
3.1 Data collection strategy 
A series of 73 designs of experiments (DoE) was generated from a streamlined deck section 
using a uniform sampling method as discussed in our previous work (Tinmitondé et al., 2022). 
The force coefficients and their derivatives were calculated for each sample design using 2D-



URANS CFD simulations. The critical flutter velocity of each DoE was then computed using a 
quasi-steady theory by using the dynamic parameters of a Great Belt Bridge. The shape 
configuration of the deck cross-section as well as the overview of the great can be seen in Fig. 2. 
 

  
(a) Shape variation of the decks (b) Overview of the Great Belt Bridge 

 
Fig. 2 Shape variation of the streamlined deck under study and the overview of the Great Belt Bridge 

 
3.2 Analyse of the data used to train the Bayesian model 
To train the Bayesian model the most influential design parameters 1 2, , , , TB H     of the 

streamlined bridge deck were chosen as input variables and the critical flutter velocity was 
considered the output variable. Fig. 3 shows the relationship between the design parameters and 
the critical flutter velocity. Furthermore, to better understand which probability distribution 
describes our critical flutter velocity data, several probabilities (normal, lognormal, exponential, 
and Weibull) distribution using two statistical tests such as Anderson Darling test and the 
Kolmogorov-Smirnov test. The results indicated that both normal and lognormal distributions 
satisfied the statistical tests and therefore described better the flutter velocity data. Nonetheless, 
only normal distribution is retained to conduct this study. 
 

 
 

Fig. 3 Relationship between inputs and output variables 
 
4. RESULTS AND DISCUSSIONS 
To perform the proposed Bayesian model in this study, 50000 samples of 

, , , , , ,            were drawn for the training and testing set (70% and 30% respectively) 

using MCMC (Markov Chain Monte Carlo) simulation methods to predict the posterior 
probability distribution of   which was implemented in Python 3.8. Three MCMC sampling 
techniques (NUTS, Metropolis, and Hamiltonian MC) were used and the results indicated that 
the sampling technique adopted can affect the accuracy of the prediction results. Moreover, four 
chains were used to ensure that the accuracy of the results was not affected by the number of 
chains during the simulations. The results of 50000 samples of ,  , and   were generated 

based on the MCMC simulation for both training and testing data, and only the result of the 
training is presented here for brevity. The results indicated that the model with NUTS sampling 



presented the best performance on both the training and testing data. Fig. 4 shows the training 
results of the Bayesian model using the NUTS sampling strategy. Furthermore, the proposed 
Bayesian model was compared to three conventional ML models (support vector regression, 
random forest, and extreme gradient boosting), and the results of the performance metrics show 
that the Bayesian model overperformed the three ML models. Furthermore, more details can be 
found on the same research previously conducted by the authors where sensitivity and 
correlation analyses between design parameters were discussed (Tinmitondé et al., 2023). 
 

 
(a) Posterior densities of the prior parameters , ,    

 
(b) Confidence interval of parameters , ,    

 
(c) Plot of posterior predictive 

 
(d) CDF and uncertainty in the prediction 

 
Fig. 4 Training set results for N=50000 using NUTS sampler, and the running time is T=759seconds 

 
5. CONCLUSIONS 
Bayesian modeling was used to predict the critical flutter velocity of a long-span suspension 
bridge where the five influential design variables were used as inputs. The results indicated that 
the proposed Bayesian model overperformed the conventional machine learning models and can 
include uncertainties in the data during prediction. Nonetheless, the phenomenon of blessing and 
curse of uncertainties is already included in our future research for further validation. 
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